CSCI 210: Computer Architecture
Lecture 25: Data Path 2

Stephen Checkoway
Slides from Cynthia Taylor

Announcements

Problem Set 8 Due TONIGHT 10pm
— Problem Sets 5 and 6 graded, resubmits up

Lab 7 due Monday 10 pm

Computational Skills Hours, King 225
— Wednesday, Sunday 7—-9 pm

Cynthia’s Student Hours King 139 B
— Monday 4:30 —-5:30 pm
— Thursday 10 am — noon

CS History: Intel 4004

* First commercially available
microprocessor (single chip with both
data processing logic and control)

e Released in 1971

 Had 12-bit addresses, 8-bit instructions,
and 4-bit data words

* 16 4-bit registers

e Designed for Binary-Coded Decimal, in
which every decimal digit is stored as a
4-bit value

— Still present in x86

The Processor: Datapath & Control

 We're ready to look at an implementation of MIPS simplified to
contain only:

— memory-reference instructions: 1w, sw
— arithmetic-logical instructions: add, sub, and, or, slt
— control flow instructions: beqg

lw St1, 4(St0)

StO is register 8, St1 is register 9
St0 holds 0x07AB8110
0x07AB8114 holds 12

> Regd] ALU operation
register dZ’?aa? . MemWrite
Regd Zero MemtoReg
Instruction | register 2 ALUSrc ALU
Wite Registers poaq 0 r?sl;.ulljt Address Rdeaa;cai ~(1
o—>
register data 2 "lf htlxl
X
»| Write > 1x ~\0
data Data
»| Write
RegWrite data memory
16 | sign- 32 MemRead
~ | extend
op = lw rs=8 |rt=9 imm =4

Branch Instructions

* Read register operands

e Compare operands
— Use ALU, subtract and check Zero output

e Calculate target address
— Sign-extend offset
— Shift left 2 bits (word offset)
— AddtoPC+4

* Already calculated during instruction fetch

Conditional Branch Instructions Require

beq St2, St3, 0x4F35
A. ALU

4. PC-relative addressing

{}pl rs l r l Address Memory

| PC (+) Word

B. Registers and an ALU ‘

Read register operands
Compare operands

Use ALU, subtract and check Zero output
Calculate target address

Sign-extend offset

Shift left 2 bits (word offset)

D. Registers, an ALU and an Adder Add to PC + 4

Already calculated during instruction fetch

C. Registers, ALU and Memory

Instruction

A A

Read
register 1 Read
Read data 1
register 2
Write Registers
register Read
Write data 2
data

RegWrite

16 _| Sign- 32

~ | extend

Branch Instructions

PC +4 from instruction datapath —

Add Sum

ALU Zero

Branch
target

ALU operation

To branch
control logic

Branch Instructions

PC +4 from instruction datapath —

=

Branch

Add Sum target

ALU operation

To branch
control logic

ALU Zero

A A

0x4045A130 label: add Ss0, SsO, St0
0x4045A134 addi Sto, Sto, 1
0x4045A138 beq Sto, St1, label
Read
Instruction register 1
Read
register 2
Write Registers
register
Write
data
RegWrite
16‘ Sign-
~ | extend
op=0x04 |rs=8 |rt= imm = OxFFFD

St0 holds 5
Stl holds 5

Datapath (still simplified a bit)

PC

>Add

PCSrc

\

Y

Read
address
Instruction

Instruction
memory

ALUSrc

Read

register 1 Read
Read data 1
register 2

Registers

Write 09 Read
register data 2
Write

data

RegWrite

16_ Sign-
—>

extend

Add

ALU
result

xc=s

4 ALU operation

Read

Address data

Write Data

32

data memory

MemRead

MemWrite

MemtoReg

addi St1, StO, -1

PCSrc
| ’
Add u
LU X
A
4— Add result
Read ALUS ALU operation
Read i rc 4 P
— PC address register 1 Read > MemWrite
F{egd data 1 MemtoReg
Instruction register 2
Regist
Write CJ'SteTS Read Address Rde;g
Instruction register data 2 M
memory u
Write X
data
| Write Data
RegWrite "| data memory
MemRead
16= Sign- 32
~ | extend
St0 holds 10
op=0x08 |rs=8 |rt=9 imm = OxFFFF

What do we need to add to support ori?

PCSrc

-
-

Y

A

ALUSrc

Add

ALU
result

xc=g

Recall: ori logically ors

the lower 16 bits of the specified
register with the immediate. It does
not change the upper 16 bits.

4 ALU operation

| MemWrite
MemtoReg

Read

Address data

Write ~ Data

data memory

MemRead

4 —»
Read
Read :
PC re— address register 1 Read
Read data 1
Instruction register 2
Write Registers g,,q
Instruction register data 2
memory Wit
rite
| data
RegWrite
\1\?= Sign- 32
extend
ori St0, St1, -3
St1 holds 5
op=0x0D |rs=9 |rt= imm = OxFFFD

sw St1, 8(St0)

PCSrc
M
>Add . ¢
LU X
A
4 — Add oqyit
Read ALUS ALU operation
Read . c 4 P
PC address register 1 Read |, MemWrite
Read data 1 MemtoReg
Instruction register 2
Write Registers g, 4 Address Rdeae;g
Instruction register data 2
memory
Write
data
| write Data
RegWrite " |data memory
MemRead
16= Sign-
~ | extend
St0 holds 0x07AB8110
St1 holds 5
op=0x2B |rs= rt imm = 0x0008

Composing the Elements

e Data path does an instruction in one clock cycle
— Each data path element can only do one function at a time

— Hence, we need separate instruction and data memories, ALU and
adders, etc

* Use multiplexers where alternative data sources are used for
different instructions

Key Points

* CPU s just a collection of state and combinational logic

* We just designed a very rich processor, at least in terms of
functionality

e ET=1C * CPI * Cycle Time

Reading

e Next lecture: Control Path
— Section 5.4

	Slide 1: CSCI 210: Computer Architecture Lecture 25: Data Path 2
	Slide 2: Announcements
	Slide 3: CS History: Intel 4004
	Slide 4: The Processor: Datapath & Control
	Slide 5: lw $t1, 4($t0)
	Slide 6: Branch Instructions
	Slide 7: Conditional Branch Instructions Require
	Slide 8: Branch Instructions
	Slide 9: Branch Instructions
	Slide 10: Datapath (still simplified a bit)
	Slide 12: addi $t1, $t0, -1
	Slide 13: What do we need to add to support ori?
	Slide 14: sw $t1, 8($t0)
	Slide 15: Composing the Elements
	Slide 16: Key Points
	Slide 17: Reading

