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Announcements

Problem Set 8 Due TONIGHT 10pm
— Problem Sets 5 and 6 graded, resubmits up

Lab 7 due Monday 10 pm

Computational Skills Hours, King 225
— Wednesday, Sunday 7—-9 pm

Cynthia’s Student Hours King 139 B
— Monday 4:30 —-5:30 pm
— Thursday 10 am — noon



CS History: Intel 4004

* First commercially available
microprocessor (single chip with both
data processing logic and control)

e Released in 1971

 Had 12-bit addresses, 8-bit instructions,
and 4-bit data words

* 16 4-bit registers

e Designed for Binary-Coded Decimal, in
which every decimal digit is stored as a
4-bit value

— Still present in x86




The Processor: Datapath & Control

 We're ready to look at an implementation of MIPS simplified to
contain only:

— memory-reference instructions: 1w, sw
— arithmetic-logical instructions: add, sub, and, or, slt
— control flow instructions: beqg



lw St1, 4(St0)

StO is register 8, St1 is register 9
St0 holds 0x07AB8110
0x07AB8114 holds 12
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Branch Instructions

* Read register operands

e Compare operands
— Use ALU, subtract and check Zero output

e Calculate target address
— Sign-extend offset
— Shift left 2 bits (word offset)
— AddtoPC+4

* Already calculated during instruction fetch



Conditional Branch Instructions Require

beq St2, St3, 0x4F35
A. ALU

4. PC-relative addressing

{}pl rs l r l Address Memory

| PC (+) Word

B. Registers and an ALU ‘

Read register operands
Compare operands

Use ALU, subtract and check Zero output
Calculate target address

Sign-extend offset

Shift left 2 bits (word offset)

D. Registers, an ALU and an Adder Add to PC + 4

Already calculated during instruction fetch

C. Registers, ALU and Memory



Instruction

A A
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Branch Instructions

PC +4 from instruction datapath —

Add Sum
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control logic



Branch Instructions

PC +4 from instruction datapath —

=

Branch

Add Sum target

ALU operation

To branch
control logic

ALU Zero

A A

0x4045A130 label: add Ss0, SsO, St0
0x4045A134 addi Sto, Sto, 1
0x4045A138 beq Sto, St1, label
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St0 holds 5
Stl holds 5



Datapath (still simplified a bit)
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addi St1, StO, -1
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What do we need to add to support ori?
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Recall: ori logically ors

the lower 16 bits of the specified
register with the immediate. It does
not change the upper 16 bits.

4 ALU operation
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sw St1, 8(St0)
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Composing the Elements

e Data path does an instruction in one clock cycle
— Each data path element can only do one function at a time

— Hence, we need separate instruction and data memories, ALU and
adders, etc

* Use multiplexers where alternative data sources are used for
different instructions



Key Points

* CPU s just a collection of state and combinational logic

* We just designed a very rich processor, at least in terms of
functionality

e ET=1C * CPI * Cycle Time



Reading

e Next lecture: Control Path
— Section 5.4
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